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Consistent Histories Approach to the Unruh Effect
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Using the history projection operator (HPO) approach to consistent histories we rederive
Unruh’s result that an observer constantly accelerating through the Minkowski vacuum
appears to be immersed in a thermal bath. We show that propositions about any symmetry
of a system always form a consistent set and that the probabilities associated with such
propositions are decided by their value in the initial state. We use this fact to postulate
a condition on the decoherence functional in the HPO setup. Finally we show that the
Unruh effect arises from the fact that theinitial density matrix corresponding to the
inertial vacuum can be written as a thermal density matrix in the Fock basis associated
with the accelerating observer.

1. INTRODUCTION

1.1. Consistent Histories

The consistent histories approach to quantum theory originated in the pio-
neering work of Griffiths (1984) and Omnes (1988). Initially the formalism was
developed in an attempt to escape the familiar difficulties of the Copenhagen inter-
pretation. More recently, Gell-Mann and Hartle (1990) suggested that generalised
history theories may be useful in tackling the problems of quantum cosmology
and quantum gravity, in particular the problem of time.

The basic ingredient of “conventional” consistent histories is a time-ordered
sequence of propositions about the system represented by a class operator:

Cα :=αt1(t1)αt2(t2) · · ·αtn(tn) (1)

whereαti (ti ) is a Heisenberg picture projection operator representing a proposition
made about the system at timeti . To make physical predictions we must use the
decoherence functional to identify (strongly) consistent sets of histories, that is,
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sets{αi } such that,

d(αi , α j ) := TrH[C†αi
ρCα j ] (2)

= 0 if i 6= j (3)

Within such consistent sets, the probability of a particular historyαi “occuring” is
d(αi , αi ). The consistency condition guarantees that the Kolmolgorov sum rules
are satisfied.

If generalised history theories are to be useful in formulating quantum gravity,
then it is important to understand how more conventional theories such as nonrel-
ativistic quantum mechanics and quantum field theory (QFT) can be formulated in
history language. While nonrelativistic quantum mechanics has been extensively
studied within the formalism, there are very few results concerning QFT. This is
the motivation for this paper in which we rederive a well-known result in the theory
of QFT on curved spaces, from a histories perspective. The Unruh effect (1976)
is an analogue of Hawking radiation, but the gravitational field that induces the
radiation is “apparent” rather than “real,” That is, it is measured by an observer
accelerating through empty space rather than by an observer in the gravitational
field of a black hole.

1.2. The HPO Approach

Isham (1994) proposed an algebraic scheme for generalised history theories
of the type suggested by Gell-Mann and Hartle. The algebraic axioms are set
up in analogy with the logical approach to single-time quantum theory, which
is concerned with the pair (L, S) whereL is the lattice of projection operators
on a Hilbert space andS is the set of density matrices. Isham proposed that a
generalised history theory should be composed of the pair (UP,D) whereUP
is anorthoalgebraof propositions about possible histories andD is the space of
decoherence functionals.

To fit conventional consistent histories into these axioms, we would like to in-
terpret the class operators as logical propositions; however, the product of noncom-
muting projection operators is not a projection operator. This means it is difficult to
define conjunctions, disjunctions, and negations consistently. However, thetensor
productof two projectorsisa projector on the tensor product space. This is the cen-
tral idea of the history projection operator (HPO) approach to consistent histories.
The tensor product of Schr¨odinger picture projection operators,αt1 ⊗ αt2 ⊗ · · · ⊗
αtn , which is a projector on then-time history space,Vn :=Ht1 ⊗Ht2 ⊗ · · · ⊗Htn ,
represents the proposition “αt1 is true at timet1 and thenαt2 is true at timet2 . . .and
thenαtn is true at timetn.” Now we can define the logical operations as we would
for projection operators in any Hilbert space. So in this case, the orthoalgebraUP
is in fact the latticeP(Vn) of projection operators on the history space.
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The decoherence functional (2) can be written as

d(αi , α j ) = TrVn⊗Vn(αi ⊗ α j X) (4)

for someX ∈ B(Vn ⊗ Vn) whereB(H) is defined as the set of bounded operators
onH. Conversely Gleason’s theorem can be used to show that any decoherence
functional that satisfies certain natural conditions can be written in this form (Isham
et al., 1994). ThereforeD, the space of decoherence functionals, is the set of all
functionals of this form. This result also holds in the continuous-time case (Isham
and Linden, 1995).

2. THE SIMPLE HARMONIC OSCILLATOR

2.1. Continuous Times

In extending HPO theory to the case of continuous time, which we anticipate
to be important for QFT, we encounter the continuous tensor product of the single-
time Hilbert space:Vcts := ⊗t∈RHt . To deal with this object it is useful to confine
ourselves for the moment to the simple harmonic oscillator (SHO) (whereHt =
L2(R)) and to consider thehistory group(Isham and Linden, 1995). We can view
Vn arising as the representation space for then-fold direct product of the Weyl
group of single-time quantum theory on the line

[xti , xt j ] = 0 (5)

[ pti , pt j ] = 0 (6)

[xti , pt j ] = i hδi j (7)

The advantage of this perspective is that it can be readily generalised to the case
of continuous time. For this we consider the algebra

[x f , xg] = 0 (8)

[ pf , pg] = 0 (9)

[x f , pg] = i h( f, g) (10)

where f, g ∈ L2(R); x f := ∫ dt f (t)xt ; and (f, g) := ∫ dt f (t)g(t). This algebra
is clearly isomorphic to the algebra of a one-dimensional QFT and suggests that
field theory techniques will be useful in studying the theory. It is well-known that
this algebra has a representation on the Fock space overL2(R), denotedF [L2(R)].
Indeed it can be shown that (Isham and Linden, 1995),

Vcts := ⊗t∈R Ht ∼ F [L2(R)] (11)

and againUP is a lattice, now it is the set of projection operators on the continuous-
history space,P(Vcts). The condition that the time-averaged Hamiltonian is
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self-adjoint is sufficient to select a unique representation of the history algebra
(Isham and Linden, 1995). This representation is defined by the Fock basis asso-
ciated with the creation operator,

a†f :=
√

mω

2h
x f − i

√
1

2mωh
pf (12)

2.2. Time–Averaged Propositions

The physical interpretation of a continuous-time HPO theory is based on the
assumption that projectors onto the spectrum of self-adjoint operators onV rep-
resent propositions about the time-averages of physical quantities. So projections
onto the eigenvectors of thex f operators introduced in (8) represent propositions
about the average position of the particle over time. As [x f , xg] = 0, these operators
have common eigenvectors for any smearing function. We denote these eigenvec-
tors|x(·)〉 and they can be interpreted as fine-grained histories or trajectories of the
particle. In the single-time theory,xt |x〉 = x|x〉. So, formally,xt |x(·)〉 = x(t)|x(·)〉,
which suggests,

x f |x(·)〉 :=
∫

dt f (t)xt |x(·)〉 = ( f, x)|x(·)〉 (13)

If this is to make sense thenx(·) must be a member ofL2(R). However, it is likely
that the eigenvectorsx(·) will be distributions rather than functions. The natural
procedure now would be to interpret the symbol (f, x) to be the real number
obtained from the pairing of the distributionx with the function f . This implies
that the allowed functionsf should really be members of Schwartz space rather
thanL2(R). We will not confront this issue here, and just consider functions that
are members of some unspecified space,τ .

For eachf ∈ τ we have an equivalence relation,∼ f , on trajectories if we de-
finex(·) ∼ f y(·) if ( f, x) = ( f, y). We denote these equivalence classes by [(f, x)].
Now we consider projections onto the spectrum ofx f . We denote the operator that
projects onto the eigenvector ofx f with eigenvalue (f, x) as P( f,x); it projects
onto the equivalence class of trajectories [(f, x)], that is, onto a coarse-grained
history. Similar remarks obviously apply to operatorsP( f, p), which project onto
coarse-grained momentum trajectories [(f, p)].

Another operator of physical significance is the smeared Hamiltonian:

H f :=
∫

dt f (t)

(
1

2m
pt pt + mω2

2
xt xt

)
(14)

= hω
∫

dt f (t)

(
(a†t at )+ 1

2

)
(15)



P1: GFU/GDW/LZX P2: GCO/GCQ/GCY QC:

International Journal of Theoretical Physics [ijtp] PP159-339816 January 1, 1904 2:32 Style file version Nov. 19th, 1999

Consistent Histories Approach to the Unruh Effect 1415

Projections onto its spectrum represent propositions about the time-averaged
energy of the system.

For our purposes, the average number operatorN will be of prime importance.
We can formally define it as follows:

N :=
∫

dt a†t at (16)

The eigenvectors of this operator are vectors of the form

|n f 〉 := (n!)−1/2
∫

dt f (t)(a†t )n |0〉 (17)

These are also eigenvectors of the Hamiltonian. The average number operator has a
highly degenerate spectrum as vectors of the above form have eigenvaluen ∈ N for
all smearing functionsf , as can be easily checked. We will denote the projection
operator onto|n f 〉 asPn f ; it represents a proposition about the average number of
quanta present in a particular time interval.

2.3. Propositions within a Finite Time Interval

We can write the average number operator defined here in the formN = Nf=1,
whereNf := f dt f (t)a†t at . This shows that there is a problem with the definition
because the constant functionf = 1 is not a member ofL2(R). However it is a
member ofL2[a, b], where [a, b] is a finite interval of the real line. This suggests
that we should really be dealing with propositions in a finite interval of time.

Consider again the propositionPn f . Intuitively the support off affects the
time period in which the proposition is made. In other words ifsupp( f ) ⊂ [a, b]
then the propositionPn f refers to the average number of particles during the time
period [a, b]. We can formulate this rigorously by splitting upVcts as follows:

Vcts := ⊗t∈RHt (18)

= V [−∞,a] ⊗ V [a,b] ⊗ V [b,∞] (19)

whereV [a,b] := ⊗t∈[a,b]Ht . Now we can use the isomorphisms

⊗t∈[a,b] eL2
t [a,b] ∼ e

⊗∫ b
a L2

t [a,b] ∼ F [L2[a, b]] (20)

(Guichardet, 1972). Here,⊗
∫ b

a L2
t [a, b] is the direct integral Hilbert space over the

interval [a, b]. An element of this Hilbert space,F , can be considered as a one-
parameter family of elements ofL2[a, b], which we denote byft , wheret ∈ [a, b].
The inner product is defined as

(F, G)⊗∫ b
a L2

t [a,b] :=
∫ b

a
dt( ft , gt )L2

t [a,b] (21)
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From the right hand side of (20) we can see thatV [a,b] naturally carries a repre-
sentation of the Lie algebra

[x f , xg] = 0 (22)

[ pf , pg] = 0 (23)

[x f , pg] = i ( f, g) (24)

where f, g ∈ L2[a, b]. The natural interpretation of these operators is that they are
associated with time-averaged propositions about position and momentum in the
finite time interval [a, b]. We can form complex combinations of these operators
in the usual way to define creation and annihilation operators. Projections onto the
eigenvectors of the average number operator associated with these correspond to
propositions about the average number of particles in the time interval [a, b].

We can now see that propositions onVcts smeared by functions in a finite time
interval are isomorphic with propositions onV [a,b] by

Pn f ∼ IV [−∞,a] ⊗ P[a,b]
n f
⊗ IV [b,∞] (25)

where f ∈ L2[a, b] and P[a,b]
n f
∈ P(V [a,b] ). So from now on when we use the

average number operatorN it should be understood that in fact we are averaging
over a finite interval, that is, we are smearing with functionsf ∈ L2[a, b].

This is consistent with the definition of finite time interval projectors for
coherent states given by Isham and Linden (1995).

2.4. The Decoherence Functional

Isham and Linden (1995) and Anastopolous (2000) have defined decoher-
ence functionals for continuous-time projectors in the HPO scheme by considering
projections onto coherent states. However, we are interested in propositions con-
cerning the average number of quanta. These cannot be simply related to coherent
states, so we will take a different approach and require our decoherence functional
to respect the dynamical time translation symmetry of quantum theory. As the
projectors onto eigenstates ofN commute with the Hamiltonian, we would expect
the probability of any such proposition to be decided by its probability in the initial
state. We will see that this is indeed the case and that these propositions also form
a “canonical” consistent set. We shall then require these conditions to hold in the
HPO formalism to obtain a condition on the decoherence functional. Analogous
remarks apply to any symmetry of the system, that is, propositions regarding the
spectral projectors of any operator that commutes with the Hamiltonian will form a
consistent set and their probabilities will be decided by their value in the initial state.

Let us first examine the discrete time case for the SHO with single-time
number operator defined byNst := a†a. Here we have time translation symmetry
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[H, Nst] = 0, which corresponds to the conservation of the number of quanta. We
begin by considering a 2-time history in the conventional setup. It has eigenvectors
|n〉 := (n!)−1/2(a†)n|0〉 and we denote Schr¨odinger picture projectors onto these
vectors byPn. The class operator takes a particularly simple form,Cn1n2 := Pn1(t1)
Pn2(t2) = Pn1 Pn2 = δn1n2 Pn1. The decoherence functional is then,

dSHO(m1m2, n1n2) := TrH[Cm1m2ρC†n1n2
] (26)

= δm1m2δn1n2TrH[ Pm1ρPn1] (27)

= δm1m2δn1n2δm1n1ρm1n1 (28)

We can see that the fact that the projectors commute with the Hamiltonian means
that they must all project onto the same state for the answer to be nonzero. This
shows that propositions about the average number of particles, or more generally
propositions about any symmetry of a system, always make up a consistent set.
It is also clear that the probabilities assigned to these propositions depend on the
initial state alone.

Now we examine this in the HPO scheme. The history space isV2 = Ht1 ⊗
Ht2. We can write the above decoherence functional as a trace overH⊗5 := Ht0 ⊗
Ht1 ⊗Ht2 ⊗Ht1 ⊗Ht2 using the trick in (Isham and Linden, 1995):

dSHO(m1m2, n1n2) = TrH⊗5[ρ ⊗ Pm1 ⊗ Pm2 ⊗ Pn1 ⊗ Pn2 S5] (29)

Tracing over the initial Hilbert space we obtain,

dSHO(m1m2, n1n2) = TrV2⊗V2[ Pm1 ⊗ Pm2 ⊗ Pn1 ⊗ Pn2 Z] (30)

whereZ ∈ B(V2⊗ V2) and is defined in terms of its matrix elements in the energy
basis as

〈i1 · · · i4|Z| ji · · · j4〉 = δi1 j2δi2 j3δi3 j4ρi4 j1 (31)

Now it is the operatorZ that contains the initial conditions and forces all the
projectors to project onto the same state. In fact, by using these energy eigenstates
we have removed the dynamics from the decoherence functional and are left only
with the initial conditions and temporal structure encoded in the operatorZ. Note
that this does not uniquely defineZ as anyZ′ defined byZ′ = U †ZU whereU is
of the formei f (H ) ⊗ eig(H ) has the same matrix elements ifH is the time-averaged
Hamiltonian;H := ∫ dt Ht .

Consider a continuous-time energy proposition in standard history theory,
represented by the class operatorC{nt } :=5t Pnt (t). Heuristically, this is going to
be zero unless all of thent are equal. If they are all equal, ton say, then the infinite
product will equalPn. In this case the decoherence functional will give the same
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result as before:

dSHO({ms}, {nt }) = δmnρmn if ms = m∀s, nt = n∀t (32)

= 0 otherwise (33)

We can now understand the degeneracy in the spectrum of the average number
operator in the HPO approach. It corresponds to the fact that the number of quanta
is conserved and must be an integer. Therefore the time-averaged number of quanta
must be an integer over any time period.

From the above discussion we require that the continuous-time HPO deco-
herence functional satisfies

dcts
SHO(n f , mg) = δmnρmn (34)

for all functions f, g. This guarantees that

1. The functionaldcts
SHO assigns the correct probabilities to average number

propositions.Pn f corresponds to the proposition “There are an average of
n quanta over the time intervalt ∈ supp( f ).” However, we know that the
number of quanta is constant in time so the smearing function is irrelevant
and that the probability of findingn particles at any time is simplyρnn.

2. Number propositions still form a consistent set.

There is a class of operatorsZcts ∈ B(Vcts⊗ Vcts) such that the decoherence
functional can be written in the form

dcts
SHO(n f , mg) := TrVcts⊗Vcts[ Pn f ⊗ Pmg Zcts] (35)

suchZcts must satisfy,

〈mf ng|Zcts|m′f ′n′g′ 〉 := δmnδnm′δm′n′ρmn (36)

for all functions f, f ′, g, g′ as can be easily shown by taking the trace over energy
eigenstates:

TrVcts⊗Vcts[X] =
∫
Dµ[mf ]Dµ[ng]〈mf ng|X|mf ng〉 (37)

The measureDµ[mf ] can be assumed to exist because there is a well-defined
measure onVcts defined in terms of coherent states (Isham and Linden, 1995). The
condition (36) only definesZcts up to a unitary transformation.

3. QUANTUM FIELD THEORY

3.1. The HPO Approach to QFT

We use throughout the signature (+,−−−). To construct an HPO version
of canonical QFT on Minkowski space–time,M, we must first foliateM with a
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one-parameter family of spacelike surfaces using some timelike vectornµ, nor-
malised byηµνnµnν = 1. Note that this corresponds to a choice of time direction
as seen by some inertial observer. This choice obviously breaks Lorentz covari-
ance and an important unsolved problem in the HPO programme is to show the
equivalence of theories based on all such slicings. See Ishamet al. (1998) for a
relevant discussion. In this paper however, we will not consider this problem and
will just consider slices orthogonal to the vectorn := ∂x0 wherexµ is the coordi-
nate system onM in which our inertial observer is at rest. Now we consider a
canonical three-dimensional QFT to be defined on each Cauchy surfaceCt , where
Ct is defined by

Ct :={m ∈M | x0(m) = t} (38)

M is a globally hyperbolic space–time so these Cauchy surfaces are all isomorphic.
In fact they are all homeomorphic toR3 soHt = F [L2(R3, d3x)] for all times t .
We define the history algebra to be (in nonrigorous unsmeared form),

[φt1(x1), φt2(x2)] = 0 (39)

[πt1(x1), πt2(x2)] = 0 (40)

[φt1(x1), πt2(x2)] = i hδ(t1− t2)δ3(x1− x2) (41)

with x1 ∈ Ct1. As shown in (Ishamet al., 1998), the requirement that the
Hamiltonian is self-adjoint is sufficient to select a representation of this algebra
on the history space,

VM := ⊗t∈R Ht ∼ F [L2(M), d4x)] (42)

This representation is defined by the annihilation operator

at (x) := 1√
2

(
K

1
4

M φt (x)+ i K
− 1

4
M πt (x)

)
(43)

whereKM is defined by (KM f )(t, x) := (−∇2
x +m2) f (t, x). Equation (43) is a

familiar equation in an unusual form. If we writeφt (x) in terms ofat (k) and
a†t (k) (defined as the three-dimensional Fourier transforms ofat (x) and a†t (x)
respectively) then we have

φt (x) =
∫

d3k

(2ωk)1/2
(ei k·xa†t (k)+ e−i k·xat (k)) (44)

However, we must not let the familiar form of these equations make us forget that
we are dealing with a history theory. In particular we must remember that theφt (x)
operator is in theSchr̈odingerpicture and thet label that it carries represents the
time that a particular proposition is made, that is, it is alogical time quite separate
from dynamicaltime. We can introduce dynamical time by using a one-parameter
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unitary group as usual, but this must involve the introduction of a second time label
(Savvidou 1999):

φt (s, x) := eisHφt (x) e−isH (45)

=
∫

d3k

(2ωk)1/2
(ei (k·x−ωks)a†t (k)+ e−i (k·x−ωks)at (k)) (46)

whereH := ∫ dt Ht ∈ B(VM) is the time-averaged Hamiltonian. Another differ-
ence with the canonical theory is that only projection operators have any meaning.
Here we will be interested in propositions about the number of particles in a
particular mode so we now define these:

Nk :=
∫

dt a†t (k)at (k) (47)

This operator has a highly degenerate spectrum as vectors of the form∣∣nk
f

〉
:= (n!)−

1
2

∫
dt f (t)(a†t (k))n|0M 〉 (48)

are eigenvectors, with eigenvaluen ∈ N for all functions f . This degeneracy is
the result of the fact that we are considering a free theory, so eachNk is separately
conserved ([Nk , H ] = 0) and must be an integer. ProjectorsPnk

f
, which project

onto these vectors, represent propositions about the average number of particles
in modek in the intervalt ∈ supp(f ). Symmetry implies that the propositionsPnk

f

form a canonical consistent set and that the probability of these propositions is
decided by the probability in the initial state:

dM
(
mk

f , nk′
g

) = δmnδ
3(k − k′)ρM

mknk′ (49)

for all f, g, whereρM ∈ B (Ht0) is defined by its matrix elements:

ρM
mknk :=〈mk |ρM |nk〉 (50)

and|nk〉 := (a†t0(k))n|0M 〉.
We can write the decoherence functional in the form

dM
(
mk

f , nk′
g

) = TrVM⊗VM
[
Pmk

f
⊗ Pnk′

g
ZM

]
(51)

if ZM ∈ B (VM ⊗ VM) satisfies〈
mk1

f nk2
g

∣∣ZM∣∣m′k′1f ′ n
′k′2
g′
〉 = δmnδnm′δm′n′ δ (k1− k2) δ(k2− k′1) δ(k′1− k′2) ρmk1nk1

(52)

for all f, f ′, g, g′, which only definesZM up to a unitary transformation as before.
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3.2. Canonical QFT on Rindler Space–Time

Consider an observer accelerating with constant acceleration,α, throughM.
Let ξµ denote the coordinates in which this observer is at rest. Thenξµ are related
to the coordinatesxµ by

(x1)2− (x0)2 = (ξ1)2, x0/x1= tanh (αξ0),

x2 = ξ2, x3 = ξ3 (53)

So, constantly accelerating observers follow hyperbolae inM. These hyperbo-
lae split into two sets depending on the sign ofξ1. Rindler space,R, is defined
to be the space covered by the coordinatesξµ with ξ1 > 0. It corresponds to the
wedgex > |t | in ordinary Minkowski coordinates. Similarly,L is defined to be
the space covered byξµ with ξ1 < 0. It corresponds to the the wedgex < |−t |.
The metric in these coordinates takes the form,

ds2 := gµν dξµ dξν = (αξ1)2(dξ0)2− (dξ1)2− (dξ2)2− (dξ3)2 (54)

The vector∂ξ0 is a globally timelike Killing vector field inR. ThereforeR is
globally hyperbolic and we can formulate QFT canonically by using∂ξ0 to select a
particular representation of the canonical commutation relations. On nonglobally
hyperbolic space–times there is no globally timelike vector field and therefore no
way to select one of the infinite number of unitarily inequivalent representations.
This is the major difficulty in the theory of QFT in curved spaces. However, this
does not concern us here and we proceed by solving the classical Klein–Gordon
equation in curved space–time:

(gµν∇µ∇ν +m2)φR (ξ ) = 0 (55)

Here,∇µ is the covariant derivative associated with the metric (54). As shown
in Fulling (1973), Eq. (55) can be reduced to a Bessel equation with solutions
uR
κ (ξ ). Following the canonical procedure we now second quantise and expand the

quantum field in terms of creation and annihilation operators,

φR(ξ ) :=
∫

d3κ

(2ωκ )1/2

(
uR
κ (ξ ) bR (Eκ)† + uR

κ (ξ ) bR (Eκ)
)

(56)

We can write down a similar equation for the field inL and becauseCLτ ∪ CRτ is a
Cauchy surface forM we can expand the field onM as

φ(x) =
∫

d3κ

(2ωκ )1/2

(
bR (Eκ) ūR

κ (x)+ bR (Eκ)† ūR
κ (x)

+ bL (Eκ) ūL
κ (x)+ bL (Eκ)† ūL

κ (x)
)
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where

ūR
κ (x) := uR

κ (x) if x ∈ R (57)

:= 0 otherwise (58)

and similarly forūL
κ (x).

Unruh (1976) used the analytic properties of the eigenfunctionsuR
κ (x) to find

the Bogoliubov transformation between the above expansion and the usual one:

φ(x) =
∫

d3κ

(2ωκ )
1/2 (a(k) eik·x + a†(k) e−ik·x) (59)

Unruh showed that the inertial vacuum can be written as a thermal density matrix
in the Fock basis associated with the accelerating observer. It is this result that leads
to the claim that an accelerating observer appears to be immersed in a thermal bath.

3.3. The Histories Approach

We now formulate QFT on Rindler space–time using the HPO approach and
show how the the Unruh effect appears within the formalism.

First we use the time coordinate of our accelerating observer to foliateRwith
a one-parameter family of spacelike Cauchy surfacesCRτ where

CRτ := {r ∈ R | ξ0 (r ) = τ } (60)

The single time Hilbert space for the theory is thenHτ := F [L2 (CRτ , dµ] where
dµ (ξ ) = (αξ1)−1 d3ξ (Fulling, 1973). The History space is

VR := ⊗τ∈R Hτ ∼ F [L2 (R, dµ dτ )] (61)

By analogy with Eq. (39) we define the history algebra to be

[φτ1(Eξ1), φτ2(Eξ2)] = 0 (62)

[πτ1(Eξ1), πτ2(Eξ2)] = 0 (63)

[φτ1(Eξ1), πτ2(Eξ2)] = i hδ(τ1− τ2)δ3(Eξ1− Eξ2) (64)

with Eξ1 ∈ Cτ1.
The Hamiltonian of the real scalar field inR is

H R
τ =

1

2

∫
d3ξαξ1

(
π R
τ (Eξ )2+∇ξφR

τ (Eξ ) · ∇ξφR
τ (Eξ )+m2φR

τ (Eξ )2
)

(65)

where the vector field∇ξ is defined by∇ξ := ∂ξ1 + ∂ξ2 + ∂ξ3, and the dot product
is taken using the 3-metric onCRτ ; g3 = diag(−1,−1,−1). Equation (65) has the
same form for allτ so the representation of the history algebra in whichH R

τ is
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self-adjoint is isomorphic on eachHτ . The commutation relations of the smeared
Hamiltonian withφR

τ (Eξ ) andπ R
τ (Eξ ) are[

H R
f , φR

τ (Eξ )
] = −i hαξ1 f (τ )π R

τ (Eξ ) (66)[
H R

f , π R
τ (Eξ )

] = i h f (τ )KRφ
R
τ (Eξ ) (67)

whereKR is defined by (KR f )(τ, Eξ ) := (−∇ξ (αξ1∇ξ )+ αξ1m2) f (τ, Eξ ). Now we
can follow the analysis of Ishamet al. (1998) to show that there is a unitary
representation of the exponentiated commutation relations and that therefore the
Hamiltonian exists as a self-adjoint operator in this representation. We can deduce
the associated annihilation operators to be

bR
τ (Eξ ) = 1√

2

(
K 1/4

R φR
τ (Eξ )+ i

αξ1

K 1/4
R

π R
τ (Eξ )

)
(68)

This defines a particular complexification of the test function space that is equiv-
alent to a choice of positive and negative frequencies consistent with the Killing
field ∂ξ0. Using these creation and annihilation operators we can build the Fock
basis for the history theory. These equations can be written in a more familiar form
by taking the spectral transform of thebR

τ (Eξ ) andbR†
τ (Eξ ), that is by expanding them

in terms of the eigenfunctions ofKR, uR
κ (Eξ )2 :

φR
τ (Eξ ) :=

∫
d3k

(2ωκ )1/2

(
uR
κ (Eξ ) bR†

τ (Eκ)+ uR
κ (Eξ )bR

τ (Eκ)
)

(69)

as before. There is obviously a strong similarity between the histories version of this
problem and the canonical version. But, from the histories perspective the result of
Unruh shows nothing because a thermal density matrix is not a projection operator
and so has no meaning when defined onVM. Only elements ofP(VM) andP(VR)
are meaningful in a history theory as these can be considered as propositions about
histories, that is, as elements ofUPM andUPR. We have to change our approach
so that we are talking about projectors onto eigenvectors of the average Rindler
particle number operator:

Nκ :=
∫

dτ bR†
τ (Eκ)bR

τ (Eκ) (70)

These vectors are of the form∣∣nκf 〉 := (n!)−1/2
∫

dτ f (τ )(bR†
τ (Eκ))n|0R〉 (71)

and have a degenerate spectrum in the same way as those for the inertial ob-
server because we are still considering a free theory. Projectors onto these vectors

2 These are just the functionuR
κ (ξ ), but with the time dependent part set to 1.
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represent propositions about the time-averaged number of particles in each mode,
as seen by the accelerating observer.

The space of propositions about possible histories is not the same for the
accelerating observer as for the inertial observer, but this is not the only difference.
The decoherence functional associated with a quantum system depends on both the
initial conditions and the Hamiltonian. The accelerating observer has a different
Hamiltonian to the inertial observer and so has a different decoherence functional.

As before, the fact that [Nκ , H R] = 0 implies that

dR(mκ
f , nκ

′
g ) = δmnδ

3(κ − κ ′)ρR
mκnκ (72)

for all f, g in notation which parallels that of (49) but nowρR ∈ B (HR
τ0) and

|nκ〉 ∈ HR
τ0 is defined by

|nκ〉 := (bR†
τ0

(κ)
)n|0R〉 (73)

We can write this in the form,

dR
(
mκ

f , nκg
)

:= TrVR⊗VR
[
Pmκ

f
⊗ PnκgZ

R] (74)

for ZR ∈ B (VR ⊗ VR) defined similarly to the Minkowski case, (52).

3.4. The Unruh Effect

Finally we can see how the Unruh effect arises in the HPO formalism. Let us
consider the situation in the inertial vacuum, that is, the initial density matrix is

ρM
nknk = δ0n (75)

for all k ∈ R3, where the matrix elements are taken in the Fock representation
associated with the inertial observer. Note that this density matrix means that the
probability of the inertial observer detectingn particles in any mode is zero unless
n = 0:

dM
(
mk

f , nk′
g

) = δmnδ(k − k′)δ0n (76)

The density matrixρM is defined on some initial Hilbert spaceHt0, but we can
choose our Cauchy surfaces so that

Ht0 = HLτ0
⊗HRτ0

(77)

Using Unruh’s result on this initial Hilbert space we can write the inertial vacuum
as a thermal density matrix in the representation associated with the accelerating
observer. Tracing overHLτ0

we obtain the initial condition for the accelerating
observer (Unruh and Wald, 1984)

ρR
nknk = N2π

α
(nωκ ) (78)
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whereNβ(E) is the thermal distribution giving the probability of a scalar particle
having energyE in a heat bath of inverse temperatureβ. Finally,

dR
(
nκf , mκ ′

g

) = δmnδ(κ − κ ′)N2π
α

(nωκ ) (79)

which shows that the accelerating observer detects a thermal spectrum at inverse
temperatureβ = 2π

α
, in agreement with the result of Unruh.

4. CONCLUSION

We have shown that it is possible to consider average number propositions
within the continuous-time HPO formalism. We have postulated a condition on the
decoherence functional which ensures that energy propositions form a consistent
set, as they do in the conventional theory, and which gives the correct probabilities
for such propositions. This condition is defined for the SHO and the QFT but
can easily be generalised to any system with symmetries because its construction
involves only the matrix elements of the initial density matrix in the basis associated
with the symmetry.

We have shown that the HPO scheme allows the construction of QFT in
curved space–time and have rederived the well-known result of Unruh within this
scheme. It is a straightforward matter to extend this method to the case of Hawking
radiation and, more generally, to any of the thermal gravitational effects discussed
in the literature. In fact, the general nature of the HPO formalism—in particular
its ability to cope with very general temporal support strucures and the associated
nonunitary evolution—means that it can potentially be used to formulate QFT on
much more general space–times such as nonglobally hyperbolic space–times or
those with topology change. This remains a task for future research.

Another potentially interesting avenue of research is to attempt to apply the
formalism to other problems in conventional QFT such as scattering. Scattering
type questions typically involve propositions such as “there aren1 particles of
type 1 at timet1 and thenn2 particles of type 2 at timet2.” We cannot pose such
questions in the formalism as presented here because we cannot embed discrete
time propositions into the continuous-time history space. The best we can do is
to use propositions with support in a neighborhood oft1 and t2, which we can
arbitrarily choose to be small. Nontrivial scattering questions necessarily involve
interactions and we haven’t considered these here, but in principle there is no
reason why perturbation theory could not be developed.
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