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Consistent Histories Approach to the Unruh Effect
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Using the history projection operator (HPO) approach to consistent histories we rederive
Unruh’s result that an observer constantly accelerating through the Minkowski vacuum
appearsto beimmersed in athermal bath. We show that propositions about any symmetry
of a system always form a consistent set and that the probabilities associated with such
propositions are decided by their value in the initial state. We use this fact to postulate
a condition on the decoherence functional in the HPO setup. Finally we show that the
Unruh effect arises from the fact that tirétial density matrix corresponding to the
inertial vacuum can be written as a thermal density matrix in the Fock basis associated
with the accelerating observer.

1. INTRODUCTION
1.1. Consistent Histories

The consistent histories approach to quantum theory originated in the pio-
neering work of Griffiths (1984) and Omnes (1988). Initially the formalism was
developed in an attempt to escape the familiar difficulties of the Copenhagen inter-
pretation. More recently, Gell-Mann and Hartle (1990) suggested that generalised
history theories may be useful in tackling the problems of quantum cosmology
and quantum gravity, in particular the problem of time.

The basic ingredient of “conventional” consistent histories is a time-ordered
sequence of propositions about the system represented by a class operator:

Co 1=y (), (t2) - - - oy, () )

wherew; (t;) is a Heisenberg picture projection operator representing a proposition
made about the system at tihje To make physical predictions we must use the
decoherence functional to identify (strongly) consistent sets of histories, that is,
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sets{a;} such that,
d(ei, j) = Try[Cl pCq)] (2)
=0 ifi #]j 3)

Within such consistent sets, the probability of a particular histptpccuring” is
d(wi, «;). The consistency condition guarantees that the Kolmolgorov sum rules
are satisfied.

If generalised history theories are to be useful in formulating quantum gravity,
then it is important to understand how more conventional theories such as nonrel-
ativistic quantum mechanics and quantum field theory (QFT) can be formulated in
history language. While nonrelativistic quantum mechanics has been extensively
studied within the formalism, there are very few results concerning QFT. This is
the motivation for this paper in which we rederive a well-known result in the theory
of QFT on curved spaces, from a histories perspective. The Unruh effect (1976)
is an analogue of Hawking radiation, but the gravitational field that induces the
radiation is “apparent” rather than “real,” That is, it is measured by an observer
accelerating through empty space rather than by an observer in the gravitational
field of a black hole.

1.2. The HPO Approach

Isham (1994) proposed an algebraic scheme for generalised history theories
of the type suggested by Gell-Mann and Hartle. The algebraic axioms are set
up in analogy with the logical approach to single-time quantum theory, which
is concerned with the pait( S) where L is the lattice of projection operators
on a Hilbert space and is the set of density matrices. Isham proposed that a
generalised history theory should be composed of the péh, ©) wherel/P
is anorthoalgebraof propositions about possible histories a@ids the space of
decoherence functionals.

To fit conventional consistent histories into these axioms, we would like to in-
terpretthe class operators as logical propositions; however, the product of noncom-
muting projection operators is not a projection operator. This means itis difficult to
define conjunctions, disjunctions, and negations consistently. Howevésetber
productof two projectorss a projector on the tensor product space. This is the cen-
tral idea of the history projection operator (HPO) approach to consistent histories.
The tensor product of Sobelinger picture projection operatots, ® o, ® - -+ @

o, Which is a projector on the-time history spacé/" :=Hy, ® Hi, @ - - - ® Hi,,
represents the propositioay; is true at time; and theny,, istrue attime; . .. and
thenay, is true at timet,.” Now we can define the logical operations as we would
for projection operators in any Hilbert space. So in this case, the orthoalgé&bra
is in fact the lattice?(V") of projection operators on the history space.
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The decoherence functional (2) can be written as
d(ei, oj) = Tryngyn (@i @ aj X) (4)

for someX € B(V" ® V") whereB(H) is defined as the set of bounded operators

on H. Conversely Gleason’s theorem can be used to show that any decoherence
functional that satisfies certain natural conditions can be written in this form (Isham
et al, 1994). Thereforé, the space of decoherence functionals, is the set of all
functionals of this form. This result also holds in the continuous-time case (Isham
and Linden, 1995).

2. THE SIMPLE HARMONIC OSCILLATOR
2.1. Continuous Times

In extending HPO theory to the case of continuous time, which we anticipate
to be important for QFT, we encounter the continuous tensor product of the single-
time Hilbert spaceV®® := ®.rH;. To deal with this object it is useful to confine
ourselves for the moment to the simple harmonic oscillator (SHO) (wWHere
L?(R)) and to consider thkistory group(lsham and Linden, 1995). We can view
V" arising as the representation space forrkeld direct product of the Weyl
group of single-time quantum theory on the line

[X;, ;] =0 (5)
[Py, py] =0 (6)
[, py] = ihéj; (7)

The advantage of this perspective is that it can be readily generalised to the case
of continuous time. For this we consider the algebra

[Xf,Xg] =0 (8)
[Pf, Pl =0 )
[Xt, gl =ih(f, g) (10)

wheref, g € L2(R); x¢ = [ dt f(t)x; and (f, g):= [ dt f(t)g(t). This algebra

is clearly isomorphic to the algebra of a one-dimensional QFT and suggests that
field theory techniques will be useful in studying the theory. It is well-known that
this algebra has a representation on the Fock spacé.é(Ry, denoted?[L2(R)].
Indeed it can be shown that (Isham and Linden, 1995),

V= @er Hr ~ FILA(R)] (11)

and agaii/P is a lattice, now itis the set of projection operators on the continuous-
history space,P(V°®). The condition that the time-averaged Hamiltonian is
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self-adjoint is sufficient to select a unique representation of the history algebra
(Isham and Linden, 1995). This representation is defined by the Fock basis asso-
ciated with the creation operator,

p e 1
& = V2 X" 7'V 2men P (12)

2.2. Time—Averaged Propositions

The physical interpretation of a continuous-time HPO theory is based on the
assumption that projectors onto the spectrum of self-adjoint operatdovsrep-
resent propositions about the time-averages of physical quantities. So projections
onto the eigenvectors of the operators introduced in (8) represent propositions
aboutthe average position of the particle overtimeAs ky] = 0, these operators
have common eigenvectors for any smearing function. We denote these eigenvec-
tors|x(-)) and they can be interpreted as fine-grained histories or trajectories of the
particle. Inthe single-time theong|x) = x|x). So, formallyx;|x(-)) = x(t)|x(-)),
which suggests,

X X()) = / dt F(O)xIx()) = (f, )IX() (13)

If this is to make sense thed{-) must be a member df?(R). However, it is likely
that the eigenvectors(-) will be distributions rather than functions. The natural
procedure now would be to interpret the symbé) X) to be the real number
obtained from the pairing of the distributionwith the function f. This implies
that the allowed function$ should really be members of Schwartz space rather
thanL?(R). We will not confront this issue here, and just consider functions that
are members of some unspecified space,

For eachf € t we have an equivalence relatien;, on trajectories if we de-
finex(:) ~¢ y()if( f, x) = (f, y). We denote these equivalence classes hy«]].
Now we consider projections onto the spectrum afWe denote the operator that
projects onto the eigenvector @k with eigenvalue ¢, x) as P(s,x; it projects
onto the equivalence class of trajectorie§, )], that is, onto a coarse-grained
history. Similar remarks obviously apply to operat®s, ;), which project onto
coarse-grained momentum trajectorief [i)].

Another operator of physical significance is the smeared Hamiltonian:

1 Mw?
Hy = /dt f(t)(ﬁptp[—i—watxt) (14)

= ha)/dt f(t)((atTat)—l— %) (15)
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Projections onto its spectrum represent propositions about the time-averaged
energy of the system.

For our purposes, the average number opefdtoill be of prime importance.
We can formally define it as follows:

N :=fdtafat (16)

The eigenvectors of this operator are vectors of the form

Ing) = ()22 / dt ft)al)" |0) (17)

These are also eigenvectors of the Hamiltonian. The average number operator has a
highly degenerate spectrum as vectors of the above form have eigenvaldor

all smearing functiond, as can be easily checked. We will denote the projection
operator ontgn¢) asPy,; it represents a proposition about the average number of
guanta present in a particular time interval.

2.3. Propositions within a Finite Time Interval

We can write the average number operator defined here in théNogN ¢,
whereN¢ ;= fdt f(t)afa{. This shows that there is a problem with the definition
because the constant functidn= 1 is not a member of ?(R). However it is a
member ofL?[a, b], where R, b] is a finite interval of the real line. This suggests
that we should really be dealing with propositions in a finite interval of time.

Consider again the propositids, . Intuitively the support off affects the
time period in which the proposition is made. In other wordsuipg f) C [a, b]
then the propositior®,, refers to the average number of particles during the time
period [, b]. We can formulate this rigorously by splitting 0j5'° as follows:

Yo = Rter Ht (18)
= pl-o0dl g plabl o ylb.oo] (19)

whereV®b .= ® (o 5 Hi. Now we can use the isomorphisms
Dtefaty €120 ~ e LAY~ F[L2[a, b]] (20)

(Guichardet, 1972). Her@f; L2[a, b] is the direct integral Hilbert space over the
interval [a, b]. An element of this Hilbert spacé;, can be considered as a one-
parameter family of elements bf[a, b], which we denote byi;, wheret € [a, b].
The inner product is defined as

b
(F, G)®j:L12[a,b] = / dt( fi, gl)L,Z[a,b] (21)
a
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From the right hand side of (20) we can see tH&t? naturally carries a repre-
sentation of the Lie algebra

[Xf,Xg] =0 (22)
[Pf, pg] =0 (23)
[Xt, pgl = i(f, Q) (24)

wheref, g € L?[a, b]. The natural interpretation of these operators is that they are
associated with time-averaged propositions about position and momentum in the
finite time interval g, b]. We can form complex combinations of these operators
in the usual way to define creation and annihilation operators. Projections onto the
eigenvectors of the average number operator associated with these correspond to
propositions about the average number of particles in the time intexMal. [

We can now see that propositions¥%f* smeared by functions in a finite time
interval are isomorphic with propositions o by

Par ~ Iy—c,a) ® P,E?‘b] ® Iyb,oc] (25)

where f € L?[a, b] and P2 € P(VI2P]). So from now on when we use the
average number operatbr it should be understood that in fact we are averaging
over a finite interval, that is, we are smearing with functidns L?[a, b].

This is consistent with the definition of finite time interval projectors for
coherent states given by Isham and Linden (1995).

2.4. The Decoherence Functional

Isham and Linden (1995) and Anastopolous (2000) have defined decoher-
ence functionals for continuous-time projectors in the HPO scheme by considering
projections onto coherent states. However, we are interested in propositions con-
cerning the average number of quanta. These cannot be simply related to coherent
states, so we will take a different approach and require our decoherence functional
to respect the dynamical time translation symmetry of quantum theory. As the
projectors onto eigenstatesifcommute with the Hamiltonian, we would expect
the probability of any such proposition to be decided by its probability in the initial
state. We will see that this is indeed the case and that these propositions also form
a “canonical” consistent set. We shall then require these conditions to hold in the
HPO formalism to obtain a condition on the decoherence functional. Analogous
remarks apply to any symmetry of the system, that is, propositions regarding the
spectral projectors of any operator that commutes with the Hamiltonian will form a
consistentsetand their probabilities will be decided by their value in the initial state.

Let us first examine the discrete time case for the SHO with single-time
number operator defined By := afa. Here we have time translation symmetry
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[H, NS = 0, which corresponds to the conservation of the number of quanta. We
begin by considering a 2-time history in the conventional setup. It has eigenvectors
In) := (n!)~Y?(at)"|0) and we denote Scbdinger picture projectors onto these
vectors byP,. The class operator takes a particularly simple fa@m,, := Py, (t1)

P, (t2) = Pn, P, = 8n;n, Pn,- The decoherence functional is then,

dsHo(MiMy, N1ny) = Try[CoympCl ] (26)
= SmlmzanlngTrH[Pmlme] (27)
= 3m1m25n1n25m1n1/0m1n1 (28)

We can see that the fact that the projectors commute with the Hamiltonian means
that they must all project onto the same state for the answer to be nonzero. This
shows that propositions about the average number of particles, or more generally
propositions about any symmetry of a system, always make up a consistent set.
It is also clear that the probabilities assigned to these propositions depend on the
initial state alone.

Now we examine this in the HPO scheme. The history spaté is H;, ®
Hi,. We can write the above decoherence functional as a tracé-trer= H;, ®
Hi, ® Hi, ® Hy, ® Hy, using the trick in (Isham and Linden, 1995):

dsHo(M1Mz, N1N2) = Tryes[p @ Py, ® Pm, ® Py, @ Py, S (29)
Tracing over the initial Hilbert space we obtain,
dSHo(mlmg, nlnz) = TrVZ®V2[Pm1 [ sz [ Pn1 X Pn2 Z] (30)

whereZ e B(V? ® V?) and is defined in terms of its matrix elements in the energy
basis as

(ix---1alZ1ji -+ Ja) = 8i112015j50ija Piajs (31)

Now it is the operatoiZ that contains the initial conditions and forces all the
projectors to project onto the same state. In fact, by using these energy eigenstates
we have removed the dynamics from the decoherence functional and are left only
with the initial conditions and temporal structure encoded in the operathote
that this does not uniquely defirfeas anyZ’ defined byZ’ = UfZU whereU is
of the formée' f (M) ® €9(H) has the same matrix elementsfis the time-averaged
Hamiltonian;H := [ dt H;.

Consider a continuous-time energy proposition in standard history theory,
represented by the class opera®gr, :=IT; P, (t). Heuristically, this is going to
be zero unless all of tha are equal. If they are all equal, tasay, then the infinite
product will equalP,. In this case the decoherence functional will give the same
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result as before:
dsto({ms}, {Nt}) = Smnomn  if Mg = mVs, ny = nvt (32)
= 0 otherwise (33)

We can now understand the degeneracy in the spectrum of the average number
operator in the HPO approach. It corresponds to the fact that the number of quanta
is conserved and must be an integer. Therefore the time-averaged number of quanta
must be an integer over any time period.

From the above discussion we require that the continuous-time HPO deco-
herence functional satisfies

dgﬁo(nf. Mg) = dmnPmn (34)
for all functionsf, g. This guarantees that

1. The functionablgl5, assigns the correct probabilities to average number
propositionsP,, corresponds to the proposition “There are an average of
n quanta over the time intervale supg f).” However, we know that the
number of quanta is constant in time so the smearing function is irrelevant
and that the probability of finding particles at any time is simplgn.

2. Number propositions still form a consistent set.

There is a class of operataZ$® € B(V°* @ V') such that the decoherence
functional can be written in the form

dgﬁo(nf i mg) = Trvcts®vcts[ F)nf ® ng ZCtﬂ (35)
suchZ°s must satisfy,
(M ng| ZCtS| m/f/n/gf> ‘= SmnSnm Smrn Pmn (36)

for all functionsf, f’, g, g’ as can be easily shown by taking the trace over energy
eigenstates:

Tryesgye X] = f D u[m1]D ulngl (Mgl Ximsng) (37)

The measur® p[m;] can be assumed to exist because there is a well-defined
measure o defined in terms of coherent states (Isham and Linden, 1995). The
condition (36) only defineZ® up to a unitary transformation.

3. QUANTUM FIELD THEORY
3.1. The HPO Approach to QFT

We use throughout the signature,(— — —). To construct an HPO version
of canonical QFT on Minkowski space—tim&{, we must first foliateM with a
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one-parameter family of spacelike surfaces using some timelike ve¢taror-
malised byn,,n*n" = 1. Note that this corresponds to a choice of time direction
as seen by some inertial observer. This choice obviously breaks Lorentz covari-
ance and an important unsolved problem in the HPO programme is to show the
equivalence of theories based on all such slicings. See Ighai(1998) for a
relevant discussion. In this paper however, we will not consider this problem and
will just consider slices orthogonal to the vector= 9, wherex* is the coordi-

nate system ooM in which our inertial observer is at rest. Now we consider a
canonical three-dimensional QFT to be defined on each Cauchy sdfadeere

C: is defined by

Ci:={me M| x%m) =1t} (38)

M isaglobally hyperbolic space—time so these Cauchy surfaces are allisomorphic.
In fact they are all homeomorphic ®° soH; = F[L2(R3, d3x)] for all timest.
We define the history algebra to be (in nonrigorous unsmeared form),

[¢,(X1), ¢r,(X2)] =0 (39)
[, (X1), m,(X2)] =0 (40)
[, (X1), 7, (X2)] = P h8(ty — t2)83(X1 — X2) (41)

with X1 € C;;. As shown in (Ishamet al, 1998), the requirement that the
Hamiltonian is self-adjoint is sufficient to select a representation of this algebra
on the history space,

VM= @ier Hy ~ FILA(M), d*X)] (42)
This representation is defined by the annihilation operator
L ik
() 1= = (Kij n +iKy" () (43)

whereKy is defined by Ku f)(t, X) := (—V2 + m?) f (t, x). Equation (43) is a
familiar equation in an unusual form. If we wrigg(x) in terms ofa;(k) and
atT(k) (defined as the three-dimensional Fourier transforms;f) and aﬁ(x)
respectively) then we have

d3k ; ;
309 = [ oy a0 + e a) (44)

However, we must not let the familiar form of these equations make us forget that
we are dealing with a history theory. In particular we must remember that tke
operator is in theschibdingerpicture and the label that it carries represents the
time that a particular proposition is made, that is, it isgical time quite separate
from dynamicatime. We can introduce dynamical time by using a one-parameter
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unitary group as usual, but this must involve the introduction of a second time label
(Savvidou 1999):

Pi(s, x) == Mgy (x)e oM (45)

dk i (k-x—ax8) o T —i (K-X—wxs)
- /(Zwk)l/z(e oy (k) +e “a(k)) (46)

whereH := [dtH; € B(VM) s the time-averaged Hamiltonian. Another differ-
ence with the canonical theory is that only projection operators have any meaning.
Here we will be interested in propositions about the number of particles in a
particular mode so we now define these:

Ny = f dt a' (k)a; (k) (47)

This operator has a highly degenerate spectrum as vectors of the form

Ink) := ()3 / dt £(t)(al (<))"[0™) (48)

are eigenvectors, with eigenvalnes N for all functions f. This degeneracy is

the result of the fact that we are considering a free theory, solathseparately
conserved (Nk, H] = 0) and must be an integer. Project(ﬂ";%, which project

onto these vectors, represent propositions about the average number of particles
in modek in the interval € supp(f). Symmetry implies that the propositiolft’,g«f

form a canonical consistent set and that the probability of these propositions is
decided by the probability in the initial state:

dM(mf, nf) = mnd>(k — K)o (49)

mknk’
for all f, g, wherep™ e B (Hy,) is defined by its matrix elements:
Do 1= (M| M ) (50)

and|n*) := (af (k))"|0M).
We can write the decoherence functional in the form

dM(mff, ng) = Trysgyad [ Po ® P 2] (51)

if ZM e B(VM @ VM) satisfies
(M| ZM| M) = SmndnmSmi 8 (ko — k2) 8(kz — Kp) 8(K; — K5) prs
(52)

forall f, f’, g, ¢, which only definesg™ up to a unitary transformation as before.
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3.2. Canonical QFT on Rindler Space-Time

Consider an observer accelerating with constant acceleratithroughM.
Let&* denote the coordinates in which this observer is at rest. Fheme related
to the coordinatex” by

(xH? = (= (D% xO/xt=tanh @s”),
X2 — %.2, X3 — %-3 (53)

So, constantly accelerating observers follow hyperbolagfinThese hyperbo-
lae split into two sets depending on the sigredf Rindler spaceR, is defined
to be the space covered by the coordingtesvith £ > 0. It corresponds to the
wedgex > |t] in ordinary Minkowski coordinates. Similarly; is defined to be
the space covered by with £ < 0. It corresponds to the the wedge< |—t|.
The metric in these coordinates takes the form,

ds? 1= g, dé" de” = (@t (0607 — (d6Y)” — (d67)° — (d6%°  (54)

The vectord;o is a globally timelike Killing vector field irfR. ThereforeR is
globally hyperbolic and we can formulate QFT canonically by usjago select a
particular representation of the canonical commutation relations. On nonglobally
hyperbolic space—times there is no globally timelike vector field and therefore no
way to select one of the infinite number of unitarily inequivalent representations.
This is the major difficulty in the theory of QFT in curved spaces. However, this
does not concern us here and we proceed by solving the classical Klein—Gordon
equation in curved space—time:

(@' V.V, + m?)¢R (5) =0 (55)

Here, V,, is the covariant derivative associated with the metric (54). As shown
in Fulling (1973), Eqg. (55) can be reduced to a Bessel equation with solutions
uR(€). Following the canonical procedure we now second quantise and expand the
quantum field in terms of creation and annihilation operators,

d3«
Rrey - R R /=>\t R R (=

870 = [ G (MF OB @ + " @) (56)
We can write down a similar equation for the fielddrand becaus€* U CR is a

Cauchy surface faM we can expand the field o as

d3k

(Zwk)l/Z
+ bt () U (x) +b* ()T U (x)

$(x) = (0% (%) TE (x) + b™ (&) U (x)
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where
UR(x) = uR(x) ifxeRr (57)
:= 0 otherwise (58)

and similarly foru® (x).
Unruh (1976) used the analytic properties of the eigenfunctifr{g) to find
the Bogoliubov transformation between the above expansion and the usual one:

d3k . .
o= [ oy @07 a9 e (59)

Unruh showed that the inertial vacuum can be written as a thermal density matrix
in the Fock basis associated with the accelerating observer. Itis this result that leads
to the claim that an accelerating observer appears to be immersed in a thermal bath.

3.3. The Histories Approach

We now formulate QFT on Rindler space—time using the HPO approach and
show how the the Unruh effect appears within the formalism.

First we use the time coordinate of our accelerating observer to f@liatgh
a one-parameter family of spacelike Cauchy surf@esvhere

CR:=(rer|&%(r)=1) (60)

The single time Hilbert space for the theory is thén:= F[L2(CR, du] where
du (8) = (@g1)~1d3¢ (Fulling, 1973). The History space is

VR = @rer He ~ F[L2(R, du d7)] (61)
By analogy with Eq. (39) we define the history algebra to be
[¢r,(E1), ¢-,(82)] = O (62)
[772, (8), 771, (82)] = O (63)
[pe, (1), 70, (B2)] = ih6(z1 — 12)8%(E1 — &2) (64)

with & € C.,.
The Hamiltonian of the real scalar field R is
1 - - - .
HE = 5 [ et (xFEF + Viof @) VeoF @) + mPOFER) (69

where the vector fiel®; is defined byV; := 91 + 92 + 9¢2, and the dot product
is taken using the 3-metric aif?; g = diag(-1, —1, —1). Equation (65) has the
same form for alk so the representation of the history algebra in whitf is
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self-adjoint is isomomhic on eqdh,. The commutation relations of the smeared
Hamiltonian with¢R(&) andrz R(¢) are

[HR, 6R(E)] = —ihat' ()7 R(E) (66)
[HR, 7RE)] = ih f(0)KroR(E) (67)

whereK g is defined by Kg f)(z, £) 1= (— Ve (2&1V;) + a&*m?) f (7, £). Now we

can follow the analysis of Isharat al. (1998) to show that there is a unitary
representation of the exponentiated commutation relations and that therefore the
Hamiltonian exists as a self-adjoint operator in this representation. We can deduce
the associated annihilation operators to be

bl(€) = ﬁ<K”“ RO+ 1/4 T(S)) (68)

This defines a particular complexification of the test function space that is equiv-
alent to a choice of positive and negative frequencies consistent with the Killing
field 9;0. Using these creation and annihilation operators we can build the Fock
basis for the history theory. These equations can be written in a more familiar form
by taking the spectral transform of tbé(g) andbRT (g) thatis by expanding them

in terms of the eigenfunctions &fg, u R(g)2

Pr(E) = / W(u?@) bf"' (%) + uf(§)bf(©)) (69)

as before. There is obviously a strong similarity between the histories version of this
problem and the canonical version. But, from the histories perspective the result of
Unruh shows nothing because a thermal density matrix is not a projection operator
and so has no meaning when defined@fi. Only elements oP (V) andP (V)

are meaningful in a history theory as these can be considered as propositions about
histories, that is, as elementsgPM and/P™*. We have to change our approach

so that we are talking about projectors onto eigenvectors of the average Rindler
particle number operator:

N, = / dz bR’ (¥)bR (%) (70)
These vectors are of the form
%) = (n1) /2 / dr £(1)(bR (@)"0R) (71)

and have a degenerate spectrum in the same way as those for the inertial ob-
server because we are still considering a free theory. Projectors onto these vectors

2These are just the functiarR(¢), but with the time dependent part set to 1.
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represent propositions about the time-averaged number of particles in each mode,
as seen by the accelerating observer.

The space of propositions about possible histories is not the same for the
accelerating observer as for the inertial observer, but this is not the only difference.
The decoherence functional associated with a quantum system depends on both the
initial conditions and the Hamiltonian. The accelerating observer has a different
Hamiltonian to the inertial observer and so has a different decoherence functional.

As before, the fact thatN,, HR] = 0 implies that

dR(ms, ng) = Smnd(k — k") ppere (72)

for all f, g in notation which parallels that of (49) but nomR € B(HR) and
In“) € HR, is defined by

) := (bR (x))"|0R) (73)
We can write this in the form,
d®(mf, ng) := Tryrgyr [P, ® Py Z7] (74)

for ZR € B(V® ® VR) defined similarly to the Minkowski case, (52).

3.4. The Unruh Effect

Finally we can see how the Unruh effect arises in the HPO formalism. Let us
consider the situation in the inertial vacuum, that is, the initial density matrix is

pannk = 80n (75)

for all k € R®, where the matrix elements are taken in the Fock representation
associated with the inertial observer. Note that this density matrix means that the
probability of the inertial observer detectingparticles in any mode is zero unless
n=0:

dM(mﬁ, ng) = Smns(k - k/)(SOn (76)

The density matrixoM is defined on some initial Hilbert spadé,, but we can
choose our Cauchy surfaces so that

Hi, = HE @ HE 7

Using Unruh’s result on this initial Hilbert space we can write the inertial vacuum
as a thermal density matrix in the representation associated with the accelerating
observer. Tracing ovet(~ we obtain the initial condition for the accelerating
observer (Unruh and Wald, 1984)

PR = Nz (n,) (78)
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whereNg(E) is the thermal distribution giving the probability of a scalar particle
having energyE in a heat bath of inverse temperatyeFinally,

d® (%, my) = mnd(c — k")Nex (Nv,) (79)

which shows that the accelerating observer detects a thermal spectrum at inverse
temperaturgg = %” in agreement with the result of Unruh.

4. CONCLUSION

We have shown that it is possible to consider average number propositions
within the continuous-time HPO formalism. We have postulated a condition on the
decoherence functional which ensures that energy propositions form a consistent
set, as they do in the conventional theory, and which gives the correct probabilities
for such propositions. This condition is defined for the SHO and the QFT but
can easily be generalised to any system with symmetries because its construction
involves only the matrix elements of the initial density matrix in the basis associated
with the symmetry.

We have shown that the HPO scheme allows the construction of QFT in
curved space-time and have rederived the well-known result of Unruh within this
scheme. Itis a straightforward matter to extend this method to the case of Hawking
radiation and, more generally, to any of the thermal gravitational effects discussed
in the literature. In fact, the general nature of the HPO formalism—in particular
its ability to cope with very general temporal support strucures and the associated
nonunitary evolution—means that it can potentially be used to formulate QFT on
much more general space-times such as nonglobally hyperbolic space-times or
those with topology change. This remains a task for future research.

Another potentially interesting avenue of research is to attempt to apply the
formalism to other problems in conventional QFT such as scattering. Scattering
type questions typically involve propositions such as “thererarearticles of
type 1 at timet; and them, particles of type 2 at tim&.” We cannot pose such
guestions in the formalism as presented here because we cannot embed discrete
time propositions into the continuous-time history space. The best we can do is
to use propositions with support in a neighborhood;oéndt,, which we can
arbitrarily choose to be small. Nontrivial scattering questions necessarily involve
interactions and we haven't considered these here, but in principle there is no
reason why perturbation theory could not be developed.
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